Abstract

Polymers with methyl acetal ester moiety in the side chain as acid labile protecting group were synthesized and their thermal property, plasma stability and chemical amplification (CA) positive-tone resist characteristics were investigated. 2-Admantyloxymethyl (AdOM) groups in the copolymer indicated lower glass transition temperatures and higher thermal decomposition temperatures than those of 2-methyl-2-admantyl (MAd) groups in the copolymer. AdOM polymer film showed smooth surface roughness after Ar plasma exposure compared with MAd polymer film due to the high thermal stability. The activation energies (Ea) of these deprotection reactions were calculated from Arrhenius plots of these deprotection reaction rate constants. In the low post exposure bake (PEB) temperature region, the Ea of these resists decreased in the order MAd > AdOM. The low Ea methyl acetal resists displayed good thermal flow resist characteristics for contact holes printing. In addition, the low Ea methyl acetal resist achieved a wide exposure latitude of 8.1 % and depth of focus of 400 nm for printing 80 nm 1:1 dense line pattern using NSR-306C (NA 0.78, 2/3 annular). Furthermore, the 65 nm 1:1 dense lines using ASML XT1400 (NA 0.93, C-Quad) for low Ea methyl acetal resist pattern showed no tapered and no footing profiles and small roughness on the lines pattern sidewall was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.