Abstract

Electron-determined nonuniform carrier distribution inside multiple quantum wells (MQW) is experimentally discovered. Two groups of mirror-imaged nonidentical quantum well InGaAsP/InP lasers diodes are designed, fabricated, and measured. Measured characteristics of both groups show that electron, instead of hole, is the dominant carrier affecting carrier distribution. Carrier transport effects including carrier diffusion/drift and capture/emission processes inside MQW are described to explain the nonuniform carrier distribution. The reason for the electron dominated carrier distribution is because electron takes less time to be capture into QW 2D states than hole does. The sequence of the nonidentical QWS is also shown to have significant influence on device characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.