Abstract

The reliability of medical devices such as extraction forceps is vital for dental and oral care. Apart from having hygienic properties, the extraction forceps must be strong and resistant to corrosion. This study evaluates the effects of tempering temperature on the hardness and microstructure of a medical device’s material made from stainless-steel DIN 4021. In the experiments, a heat treatment process was carried out previously with a temperature of 1,050°C and a holding time of 20 minutes. A quenching process was conducted using a cooling channel that flowed with water at 10-20°C. After the heat treatment, the material was subjected to a tempering process with temperature variations of 200, 400, and 600°C. The research results indicated that the heat treatment process could increase the material’s hardness —the hardness of the raw material changed from 20 to 48.67 HRC with the heat treatment. The tempering parameters resulted in the highest hardness of 46.67 HRC at 200°C and the lowest value of 42.33 HRC at 600°C. Microstructure testing using optical microscopy showed that it produced ferrite, pearlite, and martensite structures. In contrast, the result of a microstructure testing using Scanning Electron Microscopy on the surface of the material is that the higher the tempering temperature, the greater the microstructures’ dimension.

Highlights

Read more

Summary

Introduction

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.