Abstract

EPS (extracellular polymeric substance) production is a self-protection mechanism by which microorganisms slow or eliminate adverse effects in unfavorable environments. In this study, Pseudomonas aeruginosa and Alcaligenes faecalis were selected to explore changes in EPS components, especially protein components, under stress caused by different concentrations of Cd(II). The results showed that the protein content in EPS was the highest. The two strains achieved maximum EPS production levels of 109.17 and 214.96mg/g VSS at Cd(II) stress concentrations of 20 and 50mg/L, which were increased by 52.07% and 409.69% compared with the levels exhibited before stress, respectively. The protein content correlated very well with data from adsorption experiments. Furthermore, FTIR, 3D-EEM, and XPS results illustrated that after Cd(II) stress, C-N, C=O/-COOH, and R-NO2- moieties were formed in substantial quantities, and the stress effects of Pseudomonas aeruginosa were significantly higher than those of Alcaligenes faecalis. The results of this study showed that addition of Cd(NO3)2 effectively regulated the components of EPS, especially the protein content, and improved the adsorption capacity, which has application prospects for prevention and control of heavy metals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call