Abstract

Environmentally persistent free radicals (EPFRs) are a kind of hazardous substance that exist stably in the atmosphere for a long time. EPFRs combined with fine particulate matter (PM2.5) can enter the human respiratory tract through respiration, causing oxidative stress and DNA damage, and they are also closely related to lung cancer. In this study, the inhalation risk for EPFRs in PM2.5 and factors influencing this risk were assessed using the equivalent number of cigarette tar EPFRs. The daily inhalation exposure for EPFRs in PM2.5 was estimated to be equivalent to 0.66–8.40 cigarette tar EPFRs per day. The concentration level and species characteristics were investigated using electron paramagnetic resonance spectroscopy. The concentration of EPFRs in the study ranged from 1.353–4.653 × 1013 spins/g, and the types of EPFRs were mainly oxygen- or carbon-centered semiquinone-type radicals. Our study showed that there is a strong correlation between the concentrations of EPFRs and conventional pollutants, except for sulfur dioxide. The major factors influencing EPFR concentration in the atmosphere were temperature and wind speed; the higher the temperature and wind speed, the lower the concentration of EPFRs. The findings of this study provide an important basis for further research on the formation mechanism and health effects of EPFRs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.