Abstract
We propose a novel embedded-core hollow optical fiber composed of a central air hole, a semi-elliptical core, and an annular cladding. The fiber characteristics are investigated based on the finite element method (FEM), including mode properties, birefringence, confinement loss, evanescent field and bending loss. The results reveal that the embedded-core hollow optical fiber has a non-zero cut-off frequency for the fundamental mode. The birefringence of the hollow optical fiber is insensitive to the size of the central air hole and ultra-sensitive to the thickness of the cladding between the core and the air hole. Both thin cladding between the core and the air hole and small core ellipticity lead to high birefringence. An ultra-low birefringence fiber can be achieved by selecting a proper ellipticity of the core. The embedded-core hollow optical fiber holds a strong evanescent field due to special structure of thin cladding and therefore it is of importance for potential applications such as gas and biochemical sensors. The bending losses are measured experimentally. The bending loss strongly depends on bending orientations of the fiber. The proposed fiber can be used as polarization interference devices if the orientation angle of the fiber core is neither 0° nor 90°.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.