Abstract

If the frequency within a set of periodic emissions changes significantly, the set is called drifting emissions. In this paper, characteristics of drifting ELF/VLF emissions are examined based on the ELF/VLF data recorded at low latitudes ground station Varanasi (geom. lat. 14° 55/ N, long. 154° E, L=1.07) during the period Jan., 1990 to Dec., 1990. Total seven strong events of drifting ELF/VLF emissions have been observed on 28-29 April, 1990 at pre-midnight sector out of which 3 events were analyzed in detail. The observed ELF/VLF emissions exhibit a regular frequency drifts, increasing as well as decreasing drift. The ELF/VLF emissions observed are mainly periodic emissions of rising and falling tone chorus. These emissions were observed during a geomagnetic storm period, when minimum Dst-index was −98 nT and KP-index ≥ 5. The repetition period, sweep rate and the frequency drift rate have been evaluated for all events. We have also computed the spectral power density, location of plasmapause, maximum intensity and maximum frequency attained. The generation mechanism of these drifting ELF/VLF emissions is explained in terms of a quasi-linear electron synchrotron instability model for wave excitation. The frequency drift in these emissions have been interpreted in terms of a combined effect of L-shell drift of energetic electrons and the change in convections electric field during the substorm developments. The computed maximum spectral power density of the wave varies between 1.8 × 10-21 to 4.08 × 10-22 Gauss2/Hz. The computed frequency drift rates of these drifting emissions are found in good agreement with that of experimentally observed values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.