Abstract
BackgroundFalls in stroke survivors can lead to serious injuries and medical costs. Fall risk in older adults can be predicted based on gait characteristics measured in daily life. Given the different gait patterns that stroke survivors exhibit it is unclear whether a similar fall-prediction model could be used in this group. Therefore the main purpose of this study was to examine whether fall-prediction models that have been used in older adults can also be used in a population of stroke survivors, or if modifications are needed, either in the cut-off values of such models, or in the gait characteristics of interest.MethodsThis study investigated gait characteristics by assessing accelerations of the lower back measured during seven consecutive days in 31 non fall-prone stroke survivors, 25 fall-prone stroke survivors, 20 neurologically intact fall-prone older adults and 30 non fall-prone older adults. We created a binary logistic regression model to assess the ability of predicting falls for each gait characteristic. We included health status and the interaction between health status (stroke survivors versus older adults) and gait characteristic in the model.ResultsWe found four significant interactions between gait characteristics and health status. Furthermore we found another four gait characteristics that had similar predictive capacity in both stroke survivors and older adults.ConclusionThe interactions between gait characteristics and health status indicate that gait characteristics are differently associated with fall history between stroke survivors and older adults. Thus specific models are needed to predict fall risk in stroke survivors.
Highlights
Falls in stroke survivors can lead to serious injuries and medical costs
To explore the potential of using daily life gait assessment to predict falls in stroke survivors, the main purpose of the current study was to examine whether fall-prediction models that have been used in healthy older adults [7,8,9] can be used in a population of stroke survivors, or if modifications are needed, either in the regression coefficients of such models, or in the gait characteristics of interest
The main purpose of the study was to test whether fallprediction models that have been used in healthy older adults can be used in a population of stroke survivors, or if modifications are needed, either in the regression coefficients, or in the gait characteristics of interest
Summary
Falls in stroke survivors can lead to serious injuries and medical costs. Fall risk in older adults can be predicted based on gait characteristics measured in daily life. Given the different gait patterns that stroke survivors exhibit it is unclear whether a similar fall-prediction model could be used in this group. The main purpose of this study was to examine whether fall-prediction models that have been used in older adults can be used in a population of stroke survivors, or if modifications are needed, either in the cut-off values of such models, or in the gait characteristics of interest. Falls can result in serious injuries leading to considerable medical costs [1]. Fall rates are higher in comparison to healthy older adults [2, 3]. Falls may increase the fear of falling and may subsequently reduce physical activity [4], which can result in physical deconditioning and may further increase fall risk in the long term
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have