Abstract
Coal (Rock) pillar retaining in the mining of protective layer would cause gas dynamic disaster in the protected layer. Based on the gas geological conditions of the two-layer coal seam in Jinhe Coal Mine of Yaojie Mining District, the stress evolution law of coal seam in the rock pillar affected area was studied by theoretical analysis and numerical simulation, and the crack development law of coal seam in different loading stages under conventional triaxial loading was studied by CT scanning technology. With the analysis of the stress evolution and crack development of coal in rock pillar affected area, the gas extraction effect under different stress states and the gas desorption law after pressure relief antireflection were studied on site. The results showed that the stress of coal in the rock pillar affected area is in the approximate elastic stage of the conventional triaxial stress-strain curve, and the cracks of coal are mainly closed at this stage. Meanwhile, the increase of stress leaded to the decrease of coal permeability and the poor gas extraction effect. CT scanning tests under conventional triaxial loading were carried out in the laboratory, and three-dimensional visual models of coal sample cracks were constructed at different loading stages. When loading to the linear elastic stage, the crack volume and surface area were reduced by 74% and 71% compared with the ones in initial state. At the same time, the expression between stress σ and crack density T was further established. After comprehensive control measures such as intensive drilling discharge, presplitting blasting and coal water injection were taken to the coal in rock pillar affected area, the crack density T could reach the crack development level of the conventional triaxial loading softening stage, realizing the crack development of the coal under low stress. The enclosed gas in front of the coal could desorption flow during the roadway driving. And the predict index value K1 also decreased from 0.57 mL/(g·min1/2) to 0.17 mL/(g·min1/2) continuously. The safety of coal roadway in rock pillar affected area was realized, and the accuracy of numerical simulation and laboratory test results was verified, which had certain reference significance for coal roadway excavation under this similar conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have