Abstract

Plasma electrolyte oxidation was used to modify the surface of different Ti alloys: c.p. Ti (α hcp structure), Ti–15Nb (α′+β structure) and Ti–33Nb–33Zr (stable β cubic structure) and the influence of elements and microstructure in the TiO2-based ceramic layer formed as well as the surface properties was analyzed. The XRD patterns confirmed the presence of TiO2 (anatase and rutile) in the c.p. Ti. For Ti–15Nb (wt.%) indicated the presence the same oxides also of pentoxide niobium (Nb2O5). For Ti–33Nb–33Zr (wt.%) indicated just the presence of rutile as the stable oxide one at room temperature and dioxide zirconium (ZrO2). In addition, the formation of calcium carbonate CaCO3 and calcium phosphate Ca3(PO4)2 was detected in all 3 materials. The ceramic-like layer was more homogeneous for c.p. Ti and Ti–15Nb and more irregular hole like-pores for Ti–33Nb–33Zr. Bioactive ions used were detected in all alloys and the roughness for Ti–15Nb was higher compared to c.p. Ti. and Ti–33Nb–33Zr. The contact angle for the three samples was higher than 100°.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.