Abstract
AbstractThis study characterizes the spatial and temporal variability of the background error covariance between the land surface soil moisture and atmospheric states for a better understanding of the potentials of assimilating satellite soil moisture data under a framework of strongly coupled land–atmosphere data assimilation. The study uses the Noah land surface model coupled with the Weather Research and Forecasting (WRF) Model and the National Meteorological Center (NMC) method for computing the land–atmosphere background error covariance from 2015 to 2017 over the contiguous United States. The results show that the forecast errors in top-10-cm soil moisture and near-surface air potential temperature and specific humidity are correlated and relatively large during the daytime in the summer. The magnitude of the error correlation between these three states is comparable. For example, in July, the error correlation averaged over all day- and nighttime samples is −0.13 for near-surface temperature and humidity, −0.20 for surface soil moisture and near-surface temperature, and 0.15 for surface soil moisture and near-surface humidity. During the summer, the forecast errors in surface soil moisture are correlated with those of atmospheric states up to the sigma pressure level of 0.9 (approximately 900 hPa for a sea level location) with domain-mean correlations of −0.15 and 0.1 for temperature and humidity, respectively. The results suggest that assimilation of satellite soil moisture data could provide cross-variable impacts comparable to those assimilating conventional near-surface temperature and humidity data. The forecast errors of soil moisture are only marginally correlated with those of the winds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.