Abstract

A number of studies have shown that assimilation of satellite derived soil moisture using the ensemble Kalman Filter (EnKF) can improve soil moisture estimates, particularly for the surface zone. However, the EnKF is computationally expensive since an ensemble of model integrations have to be propagated forward in time. Here, assimilating satellite soil moisture data from the Soil Moisture Active Passive (SMAP) mission, we compare the EnKF with the computationally cheaper ensemble Optimal Interpolation (EnOI) method over the contiguous United States (CONUS). The background error–covariance in the EnOI is sampled in two ways: (i) by using the stochastic spread from an ensemble open-loop run, and (ii) sampling from the model spinup climatology. Our results indicate that the EnKF is only marginally superior to one version of the EnOI. Furthermore, the assimilation of SMAP data using the EnKF and EnOI is found to improve the surface zone correlation with in situ observations at a 95 % significance level. The EnKF assimilation of SMAP data is also found to improve root-zone correlation with independent in situ data at the same significance level; however this improvement is dependent on which in situ network we are validating against. We evaluate how the quality of the atmospheric forcing affects the analysis results by prescribing the land surface data assimilation system with either observation corrected or model derived precipitation. Surface zone correlation skill increases for the analysis using both the corrected and model derived precipitation, but only the latter shows an improvement at the 95 % significance level. The study also suggests that assimilation of satellite derived surface soil moisture using the EnOI can correct random errors in the atmospheric forcing and give an analysed surface soil moisture close to that of an open-loop run using observation derived precipitation. Importantly, this shows that estimates of soil moisture could be improved using a combination of assimilating SMAP using the computationally cheap EnOI while using model derived precipitation as forcing. Finally, we assimilate three different Level-2 satellite derived soil moisture products from the European Space Agency Climate Change Initiative (ESA CCI), SMAP and SMOS (Soil Moisture and Ocean Salinity) using the EnOI, and then compare the relative performance of the three resulting analyses against in situ soil moisture observations. In this comparison, we find that all three analyses offer improvements over an open-loop run when comparing to in situ observations. The assimilation of SMAP data is found to perform marginally better than the assimilation of SMOS data, while assimilation of the ESA CCI data shows the smallest improvement of the three analysis products.

Highlights

  • Accurate knowledge of surface and root-zone soil moisture is important since it constrains the energy and water exchanges across the land–atmosphere interface

  • We compare the ensemble Kalman Filter (EnKF) vs. ensemble Optimal Interpolation (EnOI) using output information from the data assimilation (DA) system, these skill metrics indicate how and if the DA system is performing according to its underlying assumptions

  • It was shown that the EnKF had the highest correlation skill when compared to in situ stations (0.685 surface and 0.681 root-zone), while the correlation skill of the EnOI was close to that of the EnKF (0.68 surface and 0.68 root-zone)

Read more

Summary

Introduction

Accurate knowledge of surface and root-zone soil moisture is important since it constrains the energy and water exchanges across the land–atmosphere interface. Several studies have investigated if initialization of SM could help the skill of seasonal hydrological predictions [3,4,5], and in which parts of the world such seasonal predictions are sensitive to the initial hydrological conditions [6]. In such regions, knowledge about the initial conditions of SM can provide a skilful prediction of subsequent SM conditions using historical atmospheric forcing or seasonal climate forecasts. Spatial gaps are found in the horizontal direction because not all parts of the globe will be covered every day, while temporal gaps are related to the revisit time of the satellites

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.