Abstract

Centrifugation is used in fabricating, e.g., films with large areas and/or thicknesses of several micrometers. However, it has yet to be widely employed for chalcogenide compounds, due to their relatively weak solubility in most solvents. Determining the optimum conditions for preparing solutions of chalcogenide compounds and obtaining films via centrifugation is therefore of great interest. Specific features of amorphous arsenic sulfide (As2S3) films prepared via the centrifugation of solutions in n-butylamine have been studied. These films were characterized by means of X-ray diffraction analysis, IR spectroscopy, atomic-force microscopy and Raman spectroscopy. It was shown that amorphous As2S3 films have a greater elasticity modulus than those of analogous composition produced via thermal evaporation in vacuum, or As2S3 glass. A structural model based on arsenic sulfide clusters whose surfaces are bound by negatively and positively charged ions is used to explain the experimental results obtained in this work. DC measurements show that the amorphous films exhibit semiconductor-type conductivity. Their room temperature conductivity is ~10−15 S/cm, which indicates good dielectric properties. The films are optically transparent starting from the yellow spectral range, making them promising functional materials for engineering applications in optics and photonics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.