Abstract
Abrasive slurry jet micro-machining (ASJM) uses a well-defined jet of abrasive slurry to erode features in a solid target. Compared with abrasive water jet machining (AWJM), the present ASJM system operates at pressures that are roughly two orders of magnitude lower and uses a premixed slurry of relatively low concentration. The objective of the present study was to gain a better understanding of the mechanics of erosion in ASJM by comparing its performance in the micro-machining of holes and channels in borosilicate glass with that of abrasive air jet micro-machining (AJM), a process that is simpler and relatively well understood. A new ASJM system was developed and used to machine blind holes and smooth channels of relatively uniform depth that did not suffer from the significant waviness previously reported in the literature. The effect of particle velocity, particle concentration, jet traverse speed and jet impact angle were examined. A direct comparison of ASJM and AJM results was possible since novel measurements of the crushing strength of the aluminum oxide abrasive particles used in both experiments proved to be unaffected by water. Brittle erosion was shown to be the dominant material removal mechanism in both ASJM and AJM in spite of the significant flow-induced decrease in the local impact angles of many of the particles in ASJM. A new model of the rapid particle deceleration near the target surface helped explain the much smaller erosion rates of ASJM compared with those in AJM. The modeling of the erosion process during the micro-machining of channels showed that the effect of the local impact angle at the leading edge of the advancing jet was much more significant in ASJM than in AJM, primarily due to the narrower focus of the jet impact zone in ASJM. The differences in the water and air flow fields and associated particle trajectories were used to explain the steeper side walls and flatter bottoms of the holes and channels machined with unmasked ASJM compared to those with masked AJM. The respective structures of the water and air jets also explained the much sharper definition of the edges of these features using ASJM compared with maskless AJM. The results of the study show that ASJM can be used to accurately micro-machine channels and holes with a width of 350–500μm and an aspect ratio of 0.5–1.3 without the use of masks.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have