Abstract

A novel SiC semi-superjunction-Schottky Barrier Diode (Semi-SJ-SBD) structure is proposed, which is the combination of super-junction (SJ) structure and conventional drift region structure. The proposed structure can significantly reduce the specific on-resistance (Ron-sp) and improve the forward characteristics. The breakdown voltage (VB) and specific on-resistance (Ron-sp) in different SJ depth and width are studied using two-dimensional simulator Medici and compared with conventional SiC SBD. The results show that Ron-sp is greatly reduced (greater than 10%) with VB unchanged (less than 4%) when the SJ width is chosen as 2—3 μm and SJ depth is deeper than 5 μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.