Abstract

In this study a 1-yr dataset of a convective-scale atmospheric prediction system of the European Arctic (AROME-Arctic) is compared with the ECMWF’s medium-range forecasting, ensemble forecasting, and reanalysis systems, by using surface and radiosonde observations of wind and temperature. The focus is on the characteristics of the model systems in the very short-term forecast range (6–15 h), but without a specific focus on lead-time dependencies. In general, AROME-Arctic adds value to the representation of the surface characteristics. The atmospheric boundary layer thickness, during stable conditions, is overestimated in the global models, presumably because of a too diffusive turbulence scheme. Instead, AROME-Arctic shows a realistic mean thickness compared to the radiosonde observations. All models behave similarly for the upper-air verification and surprisingly, as well, in forecasting the location of a polar low in the short-range forecasts. However, when comparing with the largest wind speeds from ocean surface winds and at coastal synoptic weather stations during landfall of a polar low, AROME-Arctic shows the most realistic values. In addition to the model intercomparison, the limitation of the representation of sea ice and ocean surface characteristics on kilometer scales are discussed in detail. This major challenge is illustrated by showing the rapid drift and development of sea ice leads during a cold-air outbreak. As well, the available sea surface temperature products and a high-resolution ocean model result are compared qualitatively. New developments of satellite products, ocean–sea ice prediction models, or parameterizations, tailored toward high-resolution atmospheric Arctic prediction, are necessary to overcome this limitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.