Abstract

This study applied a "shell bolus," an immobilizing thermoplastic shell locally thickened with extra layers over the radiation target, during postmastectomy radiation therapy (PMRT). We performed ion chamber and film measurements for a solid water phantom for thermoplastic sheets and a gel bolus for dosimetric characterization using a 6-MV X-ray flattening-filter-free (FFF) beam. The air gaps between the body surface for the gel and shell bolus were measured using computed tomography (CT) images in patients who underwent PMRT. This included seven and 13 patients treated with the gel and shell boluses, respectively. A comparison of the dose differences between a 10-mm gel bolus and a 9.6-mm-thick thermoplastic sheet at the surface and 5cm below the surface showed a 4.2% higher surface dose and 0.5% lower dose at 5-cm depth for the thermoplastic sheet compared to those for the gel bolus. The mean (p = 0.029) and maximum (p < 0.001) air gaps of the shell bolus were significantly thinner than those of the gel bolus. Thus, the shell bolus provided a close fit and robust bolus effect. In addition, the shell bolus reduced respiratory motion and eliminated the need for skin marking. Therefore, this system can be effectively used as a bolus for PMRT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call