Abstract

Water-soluble organic nitrogen (WSON) is ubiquitous in fine particulate matter (PM2.5) and poses health and environmental risks. However, there is limited knowledge regarding its comprehensive speciation and source-specific contributions. Here, we conducted chemical characterization and source apportionment of WSON in 65 PM2.5 samples collected in Hong Kong during a 1-yr period. Using various mass-spectrometry-based techniques, we quantified 22 nitrogen-containing organic compounds (NOCs), including 17 nitroaromatics (NACs), four amines, and urea. The most abundant amine and NACs were dimethylamine and 4-nitrocatechol, respectively. Two secondary (i.e., secondary formation and secondary nitrate) and five primary sources (i.e., sea salt, fugitive dust, marine vessels, vehicle exhaust, and biomass burning) of WSON and these three categories of NOCs were identified. Throughout the year, secondary sources dominated WSON formation (69.0%), while primary emissions had significant contributions to NACs (77.1%), amines (75.9%), and urea (83.7%). Fugitive dust was the leading source of amines and urea, while biomass burning was the main source of NACs. Our multi-linear regression analysis revealed the significant role of sulfate, NO3, nitrate, liquid water content, and particle pH on WSON formation, highlighting the importance of nighttime NO3 processing and heterogeneous and aqueous-phase formation of NOCs in the Hong Kong atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.