Abstract

To explore the characteristics and evaluate the risk of heavy metals in groundwater at a typical smelter-contaminated site, this study focuses on a representative a historical arsenic smelting plant in Southwest China, where the primary historical products were metallic arsenic (∼1000 tons/year) and arsenic trioxide (∼2000 ton/year). The results demonstrated As and Pb as the main pollutants in soil, and As and Cd as main pollutants in groundwater through soil profiling and quarterly groundwater analysis. The maximum As and Pb in the surface soil were 76800 and 2290 mg/kg, respectively, with As vertically infiltrating the deep gravel–sand layer (18–20 m). The groundwater pollution distribution progressively increased along flow direction, influenced by seasonal surface runoff and infiltration fluctuations. The groundwater pollutant concentrations during the dry season notably surpassed those during the wet season, with maximum As and Cd concentrations of 111.64 mg/L and 19.85 μg/L during the dry season, respectively. Furthermore, the analytic hierarchy process (AHP) was applied to evaluate the comprehensive risk of contaminated-site across pollution source load, regional groundwater intrinsic vulnerability, and evaluation of nearby sensitive receptors. The results revealed that the carcinogenic risk of lead in surface soil was moderate to high, while arsenic posed a high carcinogenic risk, contributing to an overall carcinogenic risk proportion of 89.6% in surface soil. Exposure through groundwater intake was identified as the primary pathway, with carcinogenic and noncarcinogenic risks exceeding those through skin contact. The final weights result demonstrated that the principal risk factors are the intrinsic arsenic load and protective target characteristics of regional groundwater at this site. This study provides a reference for comprehensive assessments of similarly contaminated industrial and smelting sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.