Abstract

The porous structure generated during frying influences oil absorption and textural qualities. The alteration in physical properties of wheat flour is suspected to affect the structure formation. The present study investigated the effect of physicochemical changes in wheat flour by the ball-milling process on structure formation and consequently oil absorption of a fried wheat flour batter model. Batter models containing 600 g kg(-1) moisture were made of 0-10 h ball-milled wheat flour and then fried in frying oil at 150 degrees C for 1-7 min. The samples made of milled flour possess larger pores and exhibit lower oil absorption than sample made of 0 h milled flour. The fracture force of a fried sample prepared from 5 and 10 h milled flour is lower than that of a sample prepared from 0 h milled flour. The decrease in glass transition temperature (T(g)) and melting temperature (T(m)) of milled flour affect the microstructure formation in the fried wheat flour batter. The microstructure is responsible for oil absorption and fracturability in fried food. The samples made of flour of longer ball-milling time have lower oil absorption and higher crispness. Ball-milling may be a tool to produce mechanically modified wheat flour which can reduce oil absorption for fried batter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call