Abstract

This study was carried out to investigate the enhanced removal of arsenite (As(III)) by potassium ferrate (K2FeO4) coupled with three Al-based coagulants, which focused innovatively on the distribution and transformation of hydrolyzed aluminum species as well as the mechanism of K2FeO4 interacted with different aluminum hydrolyzed polymers during As(III) removal. Results demonstrated that As(III) removal efficiency could be substantially elevated by K2FeO4 coupled with three Al-based coagulants treatment and the optimum As(III) removal effect was occurred at pH 6 with more than 97%. K2FeO4 showed a great effect on the distribution and transformation of aluminum hydrolyzed polymers and then coupled with a variety of aluminum species produced by the hydrolysis of aluminum coagulants for arsenic removal. During enhanced coagulation, arsenic removal by AlCl3 was main through the charge neutralization of in situ Al13 and the sweep flocculation of Al(OH)3, while PACl1 mainly depended on the charge neutralization of preformed Al13 and the bridging adsorption of Al13 aggregates, whereas PACl2 mainly relied on the sweep flocculation of Al(OH)3. This study provided a new insight into the distribution and transformation of aluminum species for the mechanism of As(III) removal by K2FeO4 coupled with different Al-based coagulants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call