Abstract

This study was directed to look at the chemical composition of maleo-pimaric and fumaro-pimaric rosins made of unmodified rosin with maleic anhydride (MA) or fumaric acid (FA). The results showed that one peak of a maleopimaric acid (MPA) adduct on the chromatogram was obtained when a sample of this reaction product was injected into a Gas liquid chromatography (GLC) or Gas chromatograph-Mass spectrometer (GC-MS) system. Identification of this adduct using a GC-MS showed that a reaction product of rosin and MA produced endo-maleopimaric acid methyl ester. This peak of the adduct had a similar profile as in a previous study with a base peak at m/z =146 and prominent ions at m/z = 386, m/z = 187 and at m/z = 121. In the making of MPA and fumaropimaric acid (FPA) adducts, the increase in molar ratio for both reaction temperatures of 125 and 2000C and all rosin samples used in the reaction process gave a higher yield of endo maleopimaric acid. The largest amount of this product was obtained at a molar ratio of 1:10 with the reaction at 200 degrees C. Among the origin of the rosin used in this experiment, rosin from Central Java produced the highest MPA, while the highest FPA was achieved by using rosin from North Sumatra. The relationship between the molar ratio and the concentration of MPA or FPA could be expressed as a quadratic equation. From the equation, one could predict the best molar ratio to produce the highest MPA or FPA adducts at a suitable molar ratio. Using the equation Y = -0.8475 X2 + 10.448X - 9.7125, at the reaction temperature 200 degrees C, the highest MPA (around 22.50%) could be achieved by using a molar ratio of rosin and MA of 1:6.2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call