Abstract

mplants made of titanium and its alloys are widely used in dental and orthopedic fields due to their excellent chemical stability and mechanical properties. However, due to the bio-inert properties of titanium and its alloys, it is difficult to achieve a chemical bond with bone tissue and to form a new bond on the surface. To improve biocompatibility, surface treatments are often used to modify the chemical and morphological properties. Besides, the mussel-inspired molecule of 3,4-dihydroxy-L-phenylalanine (dopamine) shows excellent biological responses. The aim of this study is to investigate the physicochemical and biomedical properties of CaP porous coating with dopamine. The CaP porous coating was prepared on titanium by micro-arc oxidation, and then bio-inspired molecular of dopamine modified surface to improve the cell behavior. Characteristics of the morphology, chemical composition, and interfacial properties of dopamine-functionalized CaP porous architecture was performed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The osteoblastic cell behaviour, such as differentiation and morphology is evaluated. The nitrogen signal in XPS spectrum was indicated that the dopamine existed in the porous coating. The anatase and rutile phases of porous coating with dopamine were identified. Morphologies of porous coating with dopamine showed the uniform and three-dimensional structure. Cell culture experiments demonstrate that the porous coating with dopamine would improve cell behavior. All findings in this study indicated that CaP porous coating with dopamine have good bioactivity for clinical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call