Abstract

Tidal flat microbes play an important ecological role by removing organic pollutants and providing an energy source. However, bacteria isolated from tidal flatsand their genomes have been scarcely reported, making it difficult to elucidate which genes and pathways are potentially involved in the above roles. In this study, strain BSSL-CR3, the third reported species among the tidal flat Flavobacterium was analyzed using whole-genome sequencing to investigate its adaptability and functionality in tidal flats. BSSL-CR3 is comprised of a circular chromosome of 5,972,859bp with a GC content of 33.84%. Genome annotation and API ZYM results showed that BSSL-CR3 has a variety of secondary metabolic gene clusters and enzyme activities including α-galactosidase. BSSL-CR3 had more proteins with a low isoelectric point (pI) than terrestrial Flavobacterium strains, and several genes related to osmotic regulation were found in thegenomic island(GI). Comparative genomic analysis with other tidal flat bacteria also revealed that BSSL-CR3 had the largest number of genes encoding Carbohydrate Active EnZymes (CAZymes) which are related to algae degradation. This study will provide insight into the adaptability of BSSL-CR3 to the tidal flats and contribute to facilitating future comparative analysis of bacteria in tidal flats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.