Abstract

The influence of tetrafluoromethane (CF4) gas on the electrical characteristics of monolithic graphene field-effect transistors (FETs) is reported. Compared with the results in nitrogen ambient, FETs in CF4 ambient exhibit a positive shift in the Dirac point voltage and an increase in drain current. These changes are ascribed to the electronegative nature of the fluorine atoms in CF4 gas, which is found to induce p-type doping and excess charge carriers in graphene. The electrical response to CF4 gas exposure demonstrates the feasibility of using monolithic graphene FETs as chemical sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.