Abstract

Tilapia (Oreochromis niloticus) is one of popular fish species in Indonesia. The high number in tilapia’s production and export of tilapia resulting in the increase of bone fish waste. an attempt to decrease the amount of the aforementioned waste, the fish bones were turned into gelatine. The gelatine produced from this waste can be put to good use by turning it into edible film due to its high water resistance and low tensile strength value. However, in order to make a proper film, both the water resistance and the tensile strength value needs another appropriate additional biopolymer. In this case, the appropriate biopolymer needed both to form the film and to repair its characteristics is chitosan. The purpose of this research is to find out the effect of the chitosan addition on the tilapia bone based gelatine film. The research used several mixtures of gelatine (G) and chitosan (C) with the following ratio: G100:C0 (GC1), G75:C25 (GC2), G50:C50 (GC3), G25:C75 (GC4), G0:C100 (GC5). ANOVA results (P<0.05) shows that the addition of chitosan on the gelatine film affected its characteristics in thickness, solubility, tensile strength, elongation at break, Fourier Transform Infrared (FTIR), color a, and color b but no significant effects on the vapor permeability and color L. The best result is shown on GC2 with thickness 0.119 mm; solubility 74.95%; tensile strength 2.635 Mpa; elongation at break 68.26%; water vapor permeability 5.897 g/h m2 and FTIR. The parameters in GC2 shows good compatibility between the two biopolymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call