Abstract

Polymeric micelles are one important class of nanoparticles for anticancer drug delivery, but the impact of hydrophobic segments on drug encapsulation and release is unclear, which deters the rationalization of drug encapsulation into polymeric micelles. This paper focused on studying the correlation between the characteristics of hydrophobic segments and encapsulation of structurally different drugs (DOX and β-carotene). Poly(ϵ-caprolactone) (PCL) or poly(l-lactide) (PLLA) were used as hydrophobic segments to synthesize micelle-forming amphiphilic block copolymers with the hydrophilic methoxy-poly(ethylene glycol) (mPEG). Both blank and drug loaded micelles were spherical in shape with sizes lower than 50nm. PCL-based micelles exhibited higher drug loading capacity than their PLLA-based counterparts. Higher encapsulation efficiency of β-carotene was achieved compared with DOX. In addition, both doxorubicin and β-carotene were released much faster from PCL-based polymeric micelles. Dissipative particle dynamics (DPD) simulation revealed that the two drugs tended to aggregate in the core of the PCL-based micelles but disperse in the core of PLLA based micelles. In vitro cytotoxicity investigation of DOX loaded micelles demonstrated that a faster drug release warranted a more efficient cancer-killing effect. This research could serve as a guideline for the rational design of polymeric micelles for drug delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.