Abstract

This paper is devoted to the problems of studying the multiperiodic solution of some evolutionary equations. The article also discusses the existence and uniqueness of a multiperiodic solution with respect to vector functions for an evolutionary reduced equation. Studies have been conducted on the characteristic function of a certain system of the evolutionary equation. Some properties of the vector function are proved. They can be used in the further study of oscillatory bounded solutions of evolutionary equations. Based on the argumentation of the theorem on the existence and uniqueness of an almost multiperiodic solution of the specified system, considered using the method of shortening the characteristic function. All estimates of the characteristic function are based on the enhanced Lipschitz condition, first introduced by academician K. P. Persidskiy. The results will also be useful in the study of periodic solutions of evolutionary equations of mathematical physics

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.