Abstract
Nitroaromatic compounds (NACs) are high of concern due to their mutagenicity, and carcinogenicity to organisms. Here, we attempted to establish a novel searching-validation-evaluation workflow that is tailored to recognize unknown NACs in environmental samples using liquid chromatography coupled with quadrupole Orbitrap high-resolution mass spectrometry (LC-Orbitrap-HRMS). We studied the fragmentation process of NAC standards in Orbitrap higher-energy collision dissociation (HCD) cells and observed that the mass loss of NO was the most prevalent among all NAC standards at both low and medium levels of collision energy. Thus, neutral loss of NO was considered as a diagnostic fragment of nitro groups and was used to screen out NACs in environmental samples. This technique is mass-loss-dependent, which enhances the recognition efficiency of NACs. Candidates exported from the PubChem compound database were further evaluated to obtain possible structures. This strategy was applied for the analysis of 24 surface soil, and we tentatively discovered two novel NACs in the analyzed samples. The semi-quantification results demonstrated that the concentrations of novel NACs were comparable to those of the ten targeted NACs in soil samples. This study provides an integrated strategy for the recognition of known and unknown NACs, which could be extended to other environmental matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.