Abstract

Energy consumption and environmental issues have become major drivers of increasing renewable energy penetration levels. The electricity generated from renewable energy sources is decentralized throughout distributed generation (DG), which is located at the distribution level. However, the presence of DG can change distribution system characteristics and affect protection systems. Thus, this study aims to investigate the impact of DG in term of its sizing and placement on distribution systems under both normal and fault conditions. In addition, the effects on voltage improvement under normal conditions and current under fault conditions are also considered. The case study system in this study was modelled after an actual section of a 22 kV distribution line from the Provincial Electricity Authority of Thailand using PSCAD software. For DG, wind turbine generation was selected as a renewable energy source. The simulation results demonstrated that the presence of DG has a significant impact on both voltage and current characteristics under both normal and fault conditions. These impacts on the distribution system caused by DG can affect the operation of conventional distribution systems, which require further analysis and preventive measures in order to ensure good system reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.