Abstract

Microarc oxidation (MAO) was used to prepare a TiO 2-based coating containing Ca and P on titanium alloy. An alkali treatment was developed to modify the surface of the MAO coating to improve the apatite-forming ability of the coating. The chemically treated MAO coating exhibits a modified layer, with the main constituents being O, Ti, Ca and Na, showing anatase. The modified MAO coating shows a rough and porous morphology containing numerous nanoflakes of ∼100 nm thickness. During the alkali treatment process, P on the surface of the MAO coating shows a main dynamic process of dissolution; however, Ca exhibits a re-deposition process as well as dissolution. The formation of the modified layer could be explained by this mechanism: negatively charged HTiO 3 - ions are formed on the MAO coating due to the attack of OH − ions on the TiO 2 phase. The HTiO 3 - ions could incorporate sodium from the alkali solution and calcium from the alkali solution and MAO coating. The apatite-forming ability of the MAO coating is improved remarkably by the simple chemical treatment, since the surface of the alkali-treated MAO coating could provide abundant Ti–OH groups probably formed by ionic exchanges between (Ca 2+, Na +) ions of the alkali-treated MAO coating and H 3O + ions of a simulated body fluid (SBF). Moreover, Ca released from the alkali-treated MAO coating increases the degree of supersaturation of SBF, promoting the formation of apatite. The apatite induced by the alkali-treated MAO coating possesses carbonated structure and pore networks on the nanometer scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.