Abstract

Abstract Our research efforts in displacement measurement interferometry focused on long-term drifts initiated an extended experimental investigation in the interferometric assemblies of our design. We aimed to analyze, characterize and tackle the long-term measurement stability, expressed as the zero-drift, with particular attention to the thermal effects. For the experimentation, we developed a thermostatic chamber equipped with active temperature regulation, an array of sensors and control electronics. With either the finely stabilized temperature or with the thermal cycling, we can carry out a range of investigations: verification of modified design or prototype interferometers, testing of production pieces, characterization of integrated assemblies and units in terms of the zero drift and the susceptibility to thermal effects—the temperature sensitivity ( δ L / δ T , expressed in nm ⋅ K−1). With these experimental studies, we demonstrate the potential of the zero drift studies to contribute to the development and broader expansion of interferometric instrumentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.