Abstract

In a cross-country skiing competition, the time difference between the winner and the skier coming in at second place is typically very small. Since the skier spends much of the energy on overcoming resistive forces, a relatively small reduction in these forces can have a significant impact on the results. The resistive forces come partly from the friction, at the tribological interface between the ski and the snow, and as with many tribological processes, the characterisation of its origin plays an important role in determining the frictional properties. Furthermore, in cross-country ski friction, there are several scales impacting the frictional performance, with the major contributors being the ski-camber profile and ski-base structure. Macro-scale measurements of the ski-camber profile under loading are often used to determine how adequate the ski is for use under specific conditions. The characteristic properties usually assessed are the force required to collapse the ski in order to obtain a certain camber height, the topography of the kick-wax zone, and the length (determined by simple means) of the frictional interfaces associated with the rear- and front glide zones, i.e., the apparent contact length. These measurements are, however, commonly performed by loading the ski against a much stiffer counter surface than snow and this affects the quantification of the characteristic properties. To date, some mathematical models have been proposed, but there is no reliable approach for determining the macro-scale properties of the contact between a cross-country ski and a counter surface using simulations. In the present paper, an Artificial Neural Network (ANN) has been trained to predict the ski-camber profile for various loads applied at different positions. A well-established deterministic approach has been employed to simulate the contact between the ANN-predicted ski-camber profile and a linearly elastic body with a flat upper surface, representing the snow. Our findings indicate that this method is feasible for the determination of relevant macro-scale contact characteristics of different skis with snow. Moreover, we show that the apparent contact area does not linearly depend on the load and that the material properties of the counter surface also exert a large impact when quantifying the apparent contact area and the average apparent contact pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call