Abstract
Present study focuses on characterisation of SiO2 optical fibers as a potential thermoluminescence (TL) system for radiation therapy dosimetry. Irradiations were made using 6 MV photon beams from a linear accelerator. Flat SiO2 optical fibers of various dimensions with 8% concentration of germanium doped were used. The dimensions of the flat fibers were 270×60 µm, 360×73 µm, 100×510 µm and 160×750 µm. Flat SiO2 optical fibers were characterised for TL dose response in terms of linearity, sensitivity, fading and reproducibility. The uncertainty measured was ±1 standard error of the mean and the coefficient variation was within ±4%, as required for clinical radiotherapy dosimetry. Results shown a good distribution of TL response measured by flat SiO2 optical fibers with uncertainties less than 4%. Linearity of TL comes out with a coefficient of determination (r2) of each fibers that is better than 99% which resulted in high percentage of confidence level. The loss of TL response due to fading, for photon irradiation at fixed energy and constant dose was found to be (20.4 ± 0.2)% over a post irradiation period of 30 days. The TL fading well, showing rapid loss in the first seven (7) days (17.8 ± 0.2)% followed by a more linear like loss subsequently the following day (3.2 ± 0.2)%. A perfect selection of fibers can enhance the accuracy of radiation dosimeter in order for better determination and measurement of radiation doses with a linear response over wide range therapeutic dose.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have