Abstract

The ring penetrometer is a shallow rotational penetrometer that has been developed to characterise the mechanical behaviour of surficial marine sediments. The strain-rate dependency of soils is crucial to the design of a wide range of offshore geotechnical infrastructure founded in the upper layers of the seabed (e.g. pipelines, cables and shallow foundations). This paper explores the potential application of a ring penetrometer test to measure the strain-rate dependency of the interface friction generated in soft soils at low stresses. Large-deformation numerical models of the test are developed using an elastoplastic constitutive model and a viscoplastic variant with strain softening. Using parameters representative of kaolin clay and a calcareous silt from an offshore location, the numerical analyses demonstrate a clear and measurable influence of both the viscous and strain-softening behaviours on the device–soil interface friction. These simulations were used to design suitable experimental protocols for multi-rate ring penetrometer tests, the results of which yielded a strain-rate dependency of 9–16% and 22–26% per log cycle in the kaolin clay and calcareous silt, respectively, which compare favourably with measurements derived from T-bar twitch experiments. Finally, models are presented that can be applied in the interpretation of varying-rate ring penetrometer test data for application in practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call