Abstract
Caissons are widely used to support fixed platforms in shallow water or moor floating platforms in deep water. Although the installation and pullout behaviours of caissons have been explored extensively, few studies are on the dissipation of excess pore pressures induced by installation of the caisson. The pull-out capacity or bearing capacity of the caisson under undrained conditions is enhanced by dissipation of excess pore pressure, given the caisson is installed in normally consolidated cohesive soil. This paper reports numerical simulations of caisson installation and the subsequent dissipation. The analyses were carried out using a coupled effective stress-pore pressure large deformation finite element (LDFE) approach incorporating the modified Cam-Clay model. The robustness of the LDFE model was validated by comparing the penetration resistance with centrifuge testing data and the guidelines. Caissons in two fine grained soils, kaolin clay and calcareous silt, were explored. The geometry of the caisson was varied to encompass the typical sizes of caissons. The dissipation responses at four locations near the caisson tip were interpreted. A normalised dissipation time around caissons is proposed, by modifying the conventional expression for a cone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of Engineering Geology and the Environment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.