Abstract
The case study of ‘Bosco Fontana’, a densely-vegetated forest located in the north of Italy, is analysed both experimentally and numerically to characterise the internal ventilation of a finite forest with a vertically non-homogeneous canopy. Measurements allow for the evaluation of the turbulent exchange across the forest canopy. The case study is then reproduced numerically via a two-dimensional RANS simulation, successfully validated against experimental data. The analysis of the internal ventilation leads to the identification of seven regions of motion along the predominate-wind direction, for whose definition a new in-canopy stability parameter was introduced. In the vertical direction, the non-homogeneity of the canopy leads to the separation of the canopy layer into an upper foliage layer and a lower bush layer, characterised respectively by an increasing streamwise velocity and turbulence intensity, and a weak backflow. The conclusions report an improved description of the dynamic layer and regions of motion presented in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.