Abstract

Concrete prisms were made with four cement types including cements with fly ash and/or blast furnace slag and three water-to-cement (w/c) ratios. Chloride penetration and corrosion of rebars were stimulated by subjecting prisms to cyclic loading with salt solution and drying. Concrete resistivity, steel potentials and corrosion rates were measured up to one year of age. Chloride penetration profiles were determined after salt loading. It was found that the resistivity of a particular concrete reflects its properties with regard to chloride penetration, corrosion initiation (probability of corrosion) and corrosion propagation (corrosion rate). Blending the cement with blast furnace slag, fly ash or both is beneficial with regard to delaying the onset of corrosion and subsequently limiting its severity under simulated de-icing salt load. The fly ash cement shows increased resistivity compared to Portland cement from eight weeks. Cement with a high percentage of slag develops a significantly higher resistivity after one week.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.