Abstract

Characterisation and evaluation of soil bacteria were conducted in order to select the most potent strains that participate in the degradation of cellulose in unique agroecosystem and climatic conditions. Cellulolytic activity of soil bacteria was estimated using qualitative assays such as growth on selective media followed by screening with Congo red, Gram’s iodine solution, confirmation test on Congo red agar, determination of enzyme production, and sugar utilisation pattern. A total of 159 soil cellulolytic bacterial strains were selected based on shape, size, and colony characteristics. According to the results of all three screening assays, sixty-four, thirty-eight and fifty-one isolates were able to degrade at some level of cellulose, respectively. Partial sequencing of the 16S rRNA gene of 64 bacterial strains obtained using sequences retrieved from the databases indicated the presence of cellulolytic bacteria represented by members of the phyla Actinobacteria (48.44%), followed by Firmicutes (32.81%), Proteobacteria (15.62%) and Bacteroidetes (3.13%). Determination of enzyme production showed that fifteen strains possess endoglucanases activity which ranged from 9.09 to 942.41 nanomoles of MUF (4-methylumbelliferone) mL. Likewise, β-glucosidase enzyme activity was determined in 23.4 % of all isolates. The sugar utilisation pattern of soil bacterial strains displayed the different capabilities of growth and utilisation on various carbon sources, which occur in lignocellulosic materials (cellulose, starch) or their hydrolysates (glucose, galactose, fructose, cellobiose, maltose, lactose, sucrose, trehalose).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.