Abstract

Targeting Induced Local Lesions IN Genomes (TILLING) combines chemical mutagenesis with high throughput screening to allow the generation of alleles of selected genes. In this study, TILLING has been applied to produce a series of mutations in genes encoding essential components of the tomato light signal transduction pathway in an attempt to enhance fruit nutritional quality. Point mutations to DEETIOLATED1 (DET1), which is responsible for the high pigment2 (hp2) tomato mutant, resulted in elevated levels of both carotenoid and phenylpropanoid phytonutrients in ripe fruit, whilst immature fruit showed increased chlorophyll content, photosynthetic capacity and altered fruit morphology. Furthermore, genotypes with mutations to the UV-DAMAGED DNA BINDING PROTEIN 1 (DDB1), COP1 and COP1like were also characterised. These genotypes largely did not display phenotypes characteristic of mutation to light signalling components but their characterisation has enabled interrogation of structure function relationships of the mutated genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.