Abstract

Microstructural variables such as particle volume fraction, distribution and agglomeration significantly affect the properties of Al–B4C metal matrix composites. The aim of the investigation was to study the quantitative characterisation of the microstructural variables and their effects on the fluidity of the composites. The results showed that the particle volume fraction, homogeneity of particle distribution, and volume fraction of agglomerates could be quantitatively analysed by the imaging analysis technique. It was found that the amounts of the particle clusters and networks, as well as the effective volume fraction of total particles augmented with the increase in the holding time. In addition, the longer holding time was, the less homogeneous the particle distribution became. Moreover, the particle agglomerates have a tendency to migrate to the flow end which results in an accelerated stopping of the flow. The increase in the effective particle volume fraction corresponded well with the fluidity deterioration of the composites during the melt holding.Les paramètres microstructuraux, tels que la fraction volumique, la distribution et l’agglomération des particules affectent de manière significative les propriétés du composite à matrice métallique Al–B4C. Ce travail porte sur la caractérisation quantitative des propriétés microstructurales ainsi que leurs effets sur la fluidité des matériaux composites. La fraction volumique des particules, l’homogénéité de leur distribution et la fraction volumique des agrégats ont été analysées quantitativement à l’aide de la technique d’analyse d’images. Les résultats montrent une augmentation de la quantité d’agrégats et de la fraction volumique effective des particules avec l’augmentation du temps de maintien. De plus, plus le temps de maintien est long, moins grande est l’homogénéité de la distribution des particules. Par ailleurs, les agglomérats ont tendance à migrer vers l’aval de l’écoulement, ce qui accélère l’arrêt de l’écoulement. L’augmentation de la fraction volumique effective des particules correspond parfaitement à la dégradation de la fluidité des matériaux composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call