Abstract

The 3D trench silicon pixel sensors developed by the TimeSPOT collaboration have demonstrated exceptional performance, even after exposure to extreme radiation fluences up to 1⋅1017 1 MeV neq/cm2. This study assesses the radiation tolerance of these sensors using minimum ionizing particles during a beam test campaign. The results indicate that while radiation damage reduces charge collection efficiency and overall detection efficiency, these losses can be mitigated to levels comparable to non-irradiated sensors by increasing the reverse bias voltage. Charge multiplication was observed and characterised for the first time in 3D trench sensors, revealing a distinct operating regime post-irradiation achievable at bias voltages close to 300 V. Additionally, the timing performance of irradiated sensors remains comparable to their non-irradiated counterparts, underscoring their resilience to radiation damage. Currently, 3D trench silicon detectors are among the fastest and most radiation-hard pixel sensors available for vertex detectors in high-energy physics colliders. These findings highlight the potential of these sensors for new 4D tracking systems of future experiments at the Future Circular Hadron Collider (FCC-hh), advancing the capabilities of radiation-hard sensor technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.