Abstract

Superradiant active clocks operating on narrow linewidth clock transitions are predicted to achieve precision orders of magnitude higher than any currently existing optical atomic clocks. We introduce a theory of superradiant lasing and implement it for the example of 40Ca atoms. The presented model, however, is valid for any two- or three-level system in an optical lattice. We perform a feasibility analysis and suggest a set of parameters for the experimental fulfillment of superradiant lasing in Ca. Moreover, we present an overview of different magic wavelengths for the 4s2 1S0 ↔ 4s4p3P1 (mJ = 0) transition in Ca for different polarizations and a robustness analysis of these magic conditions. We also report the magic-zero wavelengths for the 4s4p3P1, mJ = 0 state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.