Abstract

We consider long-term path forecasting problems in crowds, where future sequence trajectories are generated given a short observation. Recent methods for this problem have focused on modeling social interactions and predicting multimodal futures. However, it is not easy for machines to successfully consider social interactions, such as avoiding collisions while considering the uncertainty of futures under a highly interactive and dynamic scenario. In this paper, we propose a model that incorporates multiple interacting motion sequences jointly and predicts multimodal socially acceptable distributions of futures. Specifically, we introduce a new aggregation mechanism for social interactions, which selectively models long-term inter-related dynamics between movements in a shared environment through a message passing mechanism. Moreover, we propose a loss function that not only accesses how accurate the estimated distributions of the futures are but also considers collision avoidance. We further utilize mixture density functions to describe the trajectories and learn multimodality of future paths. Extensive experiments over several trajectory prediction benchmarks demonstrate that our method is able to forecast socially acceptable distributions in complex scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.