Abstract
Parkinson's disease (PD) is frequent at old age, leading to atrophy of specific neurons and to early death. Lifespan and healthy aging of organisms depend on growth factor/nutrient signaling and on bioenergetics via mitochondria, all of which regulate downstream nuclear functions through FOXO and SIR proteins. Mammalian SIRtuins include the mitochondrial deacetylase SIRT3, and recently mitochondrial lysine acetylation (AcLys) was found to initiate mitochondrial degradation by autophagy. This mitophagy process is closely regulated by PINK1 and Parkin, two interacting proteins which relocalize to mitochondria with deficient proton gradients, and whose mutations cause autosomal recessive variants of PD. Strong generalized deacetylation of mitochondrial proteins and altered SIRT3 levels occur in rodent models of PD before the onset of toxic aggregate formation. We propose that the development of site-specific AcLys-antibodies and their characterization in patients will have medical value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Progress in Molecular Biology and Translational Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.