Abstract

Parkinson's disease (PD) is one of the most common neurodegenerative disorders. The onset of PD is usually after the age of 50. Clinical symptoms of PD are not manifested until 60-80% of dopaminergic neurons in the midbrain have been affected. Cell replacement has been a promising approach for the treatment of PD. Fetal mesencephalic dopaminergic neurons seemed to improve the motor disability in patients in some early studies. However, the clinical application of this approach may be limited by ethical and logistic concerns, as well as by side effects. On the other hand, embryonic stem (ES) cells are promising candidates because of their ability to provide an unlimited supply of specific cell types, their accessibility to genetic modifications, and their broad developmental potentials. Transplants of undifferentiated ES cells were able to proliferate and fully differentiate into dopaminergic neurons in a rodent PD model. One of the concerns though is the risk of tumor formation. The tumorigenic potential of ES cells seems to be greatly reduced when cells are predifferentiated into dopaminergic neurons in vitro before implantation. Recent developments in the induction of pluripotent stem cells from somatic adult cells provide a tremendous opportunity for this field. Initial success has been reported in a rodent PD model using iPS cells (induced pluripotent stem cells). However, whether this initial result can be successfully translated into human clinical studies still needs to be determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call