Abstract

Ras proteins, particularly their active GTP-bound forms (Ras·GTP), were thought "undruggable" owing to the absence of apparent drug-accepting pockets in their crystal structures. Only recently, such pockets have been found in the crystal structures representing a novel Ras·GTP conformation. We have conducted an in silico docking screen targeting a pocket in the crystal structure of M-Ras(P40D)·GTP and obtained Kobe0065, which, along with its analogue Kobe2602, inhibits binding of H-Ras·GTP to c-Raf-1. They inhibit the growth of H-rasG12V-transformed NIH3T3 cells, which are accompanied by downregulation of not only MEK/ERK but also Akt, RalA, and Sos, indicating the blockade of interaction with multiple effectors. Moreover, they exhibit antitumor activity on a xenograft of human colon carcinoma carrying K-rasG12V. The nuclear magnetic resonance structure of a complex of the compound with H-Ras(T35S)·GTP confirms its insertion into the surface pocket. Thus, these compounds may serve as a novel scaffold for the development of Ras inhibitors with higher potency and specificity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call