Abstract
In order to maintain proper cellular functions, all living cells, from bacteria to mammalian cells, must carry out a rigorous quality control process in which nascent and newly synthesized proteins are examined. An important role of this process is to protect cells against pathological accumulation of unfolded and misfolded proteins. The endoplasmic reticulum (ER) has evolved as a staging ground for secretory protein synthesis with distinct sites for entry, quality control, and exit. In the ER, most proteins are N-glycosylated, a posttranslational modification that defines the quality control pathway that the protein will undergo. The folding state of glycoproteins is revealed by specific modifications of their N-glycans. Regardless of size and posttranslational modifications, the folding states of all proteins must be identified as unfolded, properly folded, or terminally misfolded and accordingly subjected to ER retention and continued folding attempts, export and maturation, or retrotranslocation to the cytosol for degradation. These processes involve specialized machineries that utilize molecular chaperones, protein- and N-glycan-modifying enzymes, and lectins for protein folding and quality control and ubiquitination and degradation machineries for disposal. All these machineries are regulated by a signaling pathway, the unfolded protein response, which upregulates ER functions when under the stress of high protein load. Here, we describe the molecular mechanisms that are implicated and discuss recent data that underline the importance of compartmentalization in the segregation of the various functions of the ER for their correct function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Review of Cell and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.