Abstract

The objective of this chapter is to establish the use of dynamic mechanical thermal analysis in characterizing polymer nanocomposites. Dynamic mechanical analysis is a powerful tool employed to comprehend thermal transitions of viscoelastic materials by characterizing the evolution of their macromolecular relaxation as a function of temperature and loading frequency. The presence of nanofillers perturbs the relaxation of the polymer chains affecting the stiffness, rigidity, and energy absorbing capability of polymeric materials. The modifications in the viscoelastic behavior of the polymers with the inclusion of nanofillers can be effectively studied from the storage/loss moduli and damping factor spectra obtained from this analysis. In this chapter, the potential of dynamic mechanical thermal analysis is assessed by focusing on the ability of the technique to offer information not only on the viscoelastic performance of filled thermoplastic, thermosets, and elastomeric materials, but also on the miscibility and interface strengthening of polymer blends with nanoinclusions. The various theoretical equations used for modeling dynamic mechanical properties of polymer nanocomposites are discussed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call