Abstract
In this chapter a new additive manufacturing (AM) processing route is introduced for ultra-high-performance concrete. Interdisciplinary work involving materials science, computation, robotics, architecture, and design resulted in the development of an innovative way of 3D cementitious material printing. The 3D printing process involved is based on a fused deposition modeling-like technique, in the sense that a material is deposited layer by layer through an extrusion printhead mounted on a six-axis robotic arm. The mechanical properties of 3D-printed materials are then assessed. The proposed technology succeeds in solving many of the problems that can be found in the literature. Most notably, this process allows the production of 3D large-scale complex geometries without the use of temporary supports, as opposed to 2.5D examples found in the literature for 3D concrete printing. Architectural cases of application are used as examples in order to demonstrate the potentialities of this innovative technology. Two structural elements were produced and constitute some of the largest 3D-printed concrete parts available until now. Multifunctionality was enabled for both structural elements by taking advantage of the complex geometry which can be achieved using our technology for large-scale AM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.